Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chem Commun (Camb) ; 57(56): 6871-6874, 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1281748

ABSTRACT

The trans-cleavage activity of the target-activated CRISPR/Cas12a liberated an RNA crosslinker from a molecular transducer, which facilitated the assembly of gold nanoparticles. Integration of the molecular transducer with isothermal amplification and CRISPR/Cas12a resulted in visual detection of the N gene and E gene of SARS-CoV-2 in 45 min.


Subject(s)
COVID-19/diagnosis , CRISPR-Cas Systems , Genes, Viral/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/virology , Colorimetry , Cross-Linking Reagents , RNA/chemistry
2.
Chem Sci ; 12(13): 4683-4698, 2021 Mar 02.
Article in English | MEDLINE | ID: covidwho-1189294

ABSTRACT

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated (Cas) protein systems have transformed the field of genome editing and transcriptional modulation. Progress in CRISPR-Cas technology has also advanced molecular detection of diverse targets, ranging from nucleic acids to proteins. Incorporating CRISPR-Cas systems with various nucleic acid amplification strategies enables the generation of amplified detection signals, enrichment of low-abundance molecular targets, improvements in analytical specificity and sensitivity, and development of point-of-care (POC) diagnostic techniques. These systems take advantage of various Cas proteins for their particular features, including RNA-guided endonuclease activity, sequence-specific recognition, multiple turnover trans-cleavage activity of Cas12 and Cas13, and unwinding and nicking ability of Cas9. Integrating a CRISPR-Cas system after nucleic acid amplification improves detection specificity due to RNA-guided recognition of specific sequences of amplicons. Incorporating CRISPR-Cas before nucleic acid amplification enables enrichment of rare and low-abundance nucleic acid targets and depletion of unwanted abundant nucleic acids. Unwinding of dsDNA to ssDNA using CRISPR-Cas9 at a moderate temperature facilitates techniques for achieving isothermal exponential amplification of nucleic acids. A combination of CRISPR-Cas systems with functional nucleic acids (FNAs) and molecular translators enables the detection of non-nucleic acid targets, such as proteins, metal ions, and small molecules. Successful integrations of CRISPR technology with nucleic acid amplification techniques result in highly sensitive and rapid detection of SARS-CoV-2, the virus that causes the COVID-19 pandemic.

3.
Anal Chem ; 92(24): 16204-16212, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-947511

ABSTRACT

We have developed a single-tube assay for SARS-CoV-2 in patient samples. This assay combined advantages of reverse transcription (RT) loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) enzyme Cas12a. Our assay is able to detect SARS-CoV-2 in a single tube within 40 min, requiring only a single temperature control (62 °C). The RT-LAMP reagents were added to the sample vial, while CRISPR Cas12a reagents were deposited onto the lid of the vial. After a half-hour RT-LAMP amplification, the tube was inverted and flicked to mix the detection reagents with the amplicon. The sequence-specific recognition of the amplicon by the CRISPR guide RNA and Cas12a enzyme improved specificity. Visible green fluorescence generated by the CRISPR Cas12a system was recorded using a smartphone camera. Analysis of 100 human respiratory swab samples for the N and/or E gene of SARS-CoV-2 produced 100% clinical specificity and no false positive. Analysis of 50 samples that were detected positive using reverse transcription quantitative polymerase chain reaction (RT-qPCR) resulted in an overall clinical sensitivity of 94%. Importantly, this included 20 samples that required 30-39 threshold cycles of RT-qPCR to achieve a positive detection. Integration of the exponential amplification ability of RT-LAMP and the sequence-specific processing by the CRISPR-Cas system into a molecular assay resulted in improvements in both analytical sensitivity and specificity. The single-tube assay is beneficial for future point-of-care applications.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Nucleic Acid Amplification Techniques , SARS-CoV-2/genetics , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction
4.
Anal Chem ; 92(15): 10196-10209, 2020 08 04.
Article in English | MEDLINE | ID: covidwho-612210

ABSTRACT

Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/chemistry , COVID-19 , COVID-19 Testing , CRISPR-Cas Systems , Clinical Laboratory Techniques , False Negative Reactions , High-Throughput Nucleotide Sequencing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling/methods , Viral Load , Viral Proteins/analysis , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL